Byzantine-robust decentralized optimization

William Cappelletti

EPFL, ING-MATH Master Project

4 February 2021

EPFL

Presentation plan

Problem outline

- Stochastic Optimization
- Limitations of SGD
- Decentralized Optimization

2 The Byzantine setting

- Definition
- Robust optimization

3 Existing algorithms

Analysis

- Convergence results
- Experiments

Final comments

Stochastic Optimization

The goal

We are interested in **minimizing** the expected risk w.r.t. x:

$$F(\mathbf{x}) = \mathbb{E}_{\boldsymbol{\xi}} \left[f(\mathbf{x}, x) \right]$$

We do so through the empirical version. With $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_n$ iid sample from \mathcal{D} :

$$\hat{F}(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}, \boldsymbol{\xi}_i)$$

Stochastic Gradient Descent

5 return $\mathbf{x}^{(T)}$

The more samples we include to compute $g^{(t)}$, the more its estimate is precise. We call this mini-batch SGD.

Stochastic Gradient Descent

Limitations of (batch)-SGD

- Slow gradient computations
 - Parallelization on distributed systems.
- NO Data privacy
 - → Give each node its own data: only share x^(t) and g^(t)_i.
- Bottlenecks and prone to failures
 Need to change framework!

Decentralized Optimization

Define a decentralized setting

- $\bullet\,$ We have a bunch of computers ${\cal V}$
- They generate a communication graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Each node has its own state \mathbf{x}_i and local data $\boldsymbol{\xi}_i$
- Goal: minimize local objectives

$$\operatorname*{arg\,min}_{\mathbf{x}_{i},i\in\mathcal{V}}\sum_{i\in\mathcal{V}}\mathbb{E}_{\boldsymbol{\xi}}\left[f(\mathbf{x}_{i},\boldsymbol{\xi})\right]$$

and achieve consensus:

$$\mathbf{x}_i = \mathbf{x}_j \quad \forall i, j \in \mathcal{V}$$

Decentalized Stochastic Gradient Descent

Algorithm: Gossip SGD **Input:** $\mathbf{x}^{(0)}$ initial guess, max T, $\{\eta_t\}_{t < T}$ learning rates, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ comm. graph 1 Init $\mathbf{x}_{i}^{(0)} \leftarrow \mathbf{x}^{(0)}$ for all $i \in \mathcal{V}$; **2** for $t = 0, \ldots, T - 1$ do // in parallel for each $i \in \mathcal{V}$ Collect $\mathbf{X}_i^{(t)} := \left\{ \mathbf{x}_j^{(t)} : j \in \mathcal{N}_i \right\}$; 3 $\overline{\mathbf{x}}_{i}^{(t)} \leftarrow \frac{1}{|\mathcal{N}_{i}|+1} \left(\sum_{j} \mathbf{x}_{j}^{(t)} + \mathbf{x}_{i}^{(t)} \right);$ 4 Sample $\boldsymbol{\xi}_{i}^{t} \sim \mathcal{D}$; 5 $\boldsymbol{q}_{i}^{(t)} \leftarrow \nabla f(\overline{\mathbf{x}}_{i}^{(t)}, \boldsymbol{\xi}_{i}^{t})$: 6 Broadcast $\mathbf{x}_{i}^{(t+1)} \leftarrow \overline{\mathbf{x}}_{i}^{(t)} - \eta_{t} \boldsymbol{q}_{i}^{(t)}$: 7

What if?

- What would happen if some node fails?
- What if some malicious entity infiltrates the network?

The Byzantine setting

Under the decentralized learning assumptions, we add Byzantine adversaries.

Definition

A Byzantine agent i has

- complete knowledge of the network state
- can send an arbitrary message $\mathbf{x}_{i,j}^{(t)}$ to each neighboring node j.

What are the objectives?

For a worker

- → Learn the optimal parameters
- → Speed up convergence w.r.t. working alone

For an attacker

- Break down the system
- Slow down convergence

Robust Decentalized SGD

Algorithm: Robust De-SGD **Input:** $\mathbf{x}^{(0)}$ initial guess, max T, $\{\eta_t\}_{t < T}$ learning rates, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ comm. graph 1 Init $\mathbf{x}_i^{(0)} \leftarrow \mathbf{x}^{(0)}$ for all $i \in \mathcal{V}$: 2 for t = 0, ..., T - 1 do // in parallel for each $i \in \mathcal{V}$ Collect $\mathbf{X}_{i}^{(t)} := \left\{ \mathbf{x}_{j}^{(t)} : j \in \mathcal{N}_{i} \right\}$; 3 $\hat{\mathbf{x}}_{i}^{(t)} \leftarrow \texttt{Aggr}\left(\mathbf{x}_{i}^{(t)}, \mathbf{X}_{i}^{(t)}
ight)$; 4 Sample $\boldsymbol{\xi}_{i}^{t} \sim \mathcal{D}$; 5 $\boldsymbol{q}_{i}^{(t)} \leftarrow \nabla f(\hat{\mathbf{x}}_{i}^{(t)}, \boldsymbol{\xi}_{i}^{t})$ 6 Broadcast $\mathbf{x}_{i}^{(t+1)} \leftarrow \hat{\mathbf{x}}_{i}^{(t)} - \eta_{t} \boldsymbol{g}_{i}^{(t)}$; 7

Function Aggr

Input: A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_M\} \subset \mathbb{R}^d$ Output: $\hat{\mathbf{v}}$ a robust estimate of the mean $\overline{\mathbf{v}}$ of good nodes

What has been done ?

Existing algorithms – Trimmed Mean

Function TrimmedMeanInput: b upper bound on # Byzantine,
set $\{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathbb{R}^d$ 1 Init an empty $\hat{\mathbf{x}}$;
2 foreach $k \in [d]$ do3Sort $\{[\mathbf{x}_1]_k, \dots, [\mathbf{x}_M]_k\}$ as
 $\{x_{(1)}, \dots, x_{(M)}\}$;
// Average, discarding the
lowest and highest b:
44 $[\hat{\mathbf{x}}]_k \leftarrow \frac{1}{M-2b} \sum_{k=b+1}^{M-b} x_{(k)}$;5return $\hat{\mathbf{x}}$

Average each coordinate by excluding extreme values

PROS

• Easy to understand

CONS

• Each node needs at least 2b neighbors

BRIDGE

Applying TrimmedMean to the parameters from neighboring nodes and always including the local parameters corresponds to the BRIDGE algorithm.

Existing algorithms - Krum and Bulyan

Function Krum

- **Input:** b upper bound on # Byzantine, set $\{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathbb{R}^d$
- 1 foreach $i \in [M]$ do
- 2 Identify the M b 2 closest points to \mathbf{x}_i into $\widetilde{\mathcal{N}}_i$;

3
$$| s_i \leftarrow \sum_{j \in \widetilde{\mathcal{N}}_i} \|\mathbf{x}_i - \mathbf{x}_j\|^2$$
;

4 return $\hat{\mathbf{x}} \leftarrow \arg\min_{i \in [M]} \{s_i\}$

Function Bulyan

Input: b upper bound on # Byzantine, set $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_M} \subset \mathbb{R}^d$

1 Select
$$\leftarrow \emptyset$$
;
2 while $|Select| < M - 2b$ do
3 $| \mathbf{x}_s \leftarrow \operatorname{Krum}(X \setminus Select);$
4 $| Select \leftarrow Select \cup \{\mathbf{x}_s\};$

5 return $\hat{\mathbf{x}} \leftarrow \texttt{TrimmedMean}(Select)$

- Krum: Find a candidate which is central even after removing nodes
- Bulyan: Take another Aggr rule and make it stronger

PROS

• *Convergence* in the parameter server setting

CONS

- Very strict assumptions for analysis.
- Convergence does not imply optimality.
- Each node needs at least 2b neighbors, > 4b for Bulyan.

Existing algorithms – ByGARS

$\label{eq:algorithm: ByGARS++} \textbf{Algorithm: ByGARS++}$

Score neighbors by how much they align to the validation grad

PROS

- Validate recieved *gradients* against local
- Memory of the past through scores \mathbf{q}_i

CONS

- Not sharing parameters (adapted from distributed)
- Analysis only assume (almost) fixed multiplicative noise
- Does not use local grad to move

Existing algorithms – MOZI

Algorithm: MOZI

Input: $\mathbf{x}^{(0)}$, max T, $\{\eta_t\}_{t < T}$, # byz ngbs b_i , tolerance e 1 Init $\mathbf{x}_i^{(0)} \leftarrow \mathbf{x}^{(0)}$ for all $i \in \mathcal{V}$; 2 for $t \in [T-1]$ do // in parallel for each $i \in \mathcal{V}$ Collect $\mathbf{x}_{i}^{(t)}$ for $j \in \mathcal{N}_{i}$; 3 Sample $\boldsymbol{\xi}_{i}^{t} \sim \mathcal{D}$; 4 $l_i^t \leftarrow f(\mathbf{x}_i^{(t)}, \boldsymbol{\xi}_i^t);$ 5 $\boldsymbol{g}_{i}^{(t)} \leftarrow \nabla f(\mathbf{x}_{i}^{(t)}, \boldsymbol{\xi}_{i}^{t});$ 6 for $j \in \mathcal{N}_i$ do 7 $d_{i,j} \leftarrow \left\| \mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)} \right\|;$ 8 $Close \leftarrow \arg \min_{\substack{\mathcal{N}^* \subseteq \mathcal{N}_i, \\ |\mathcal{N}^*| = M - b_i}} \sum_{j \in \mathcal{N}^*} d_{i,j};$ 9 $Sel \leftarrow \emptyset$: 10 for $i \in Close$ do $l_i^t \leftarrow f(\mathbf{x}_i^{(t)}, \boldsymbol{\xi}_i^t)$; 12 if $l_i^t - l_i^t \ge \epsilon$ then 13 $Sel \leftarrow Sel \cup \{j\};$ 14 if Sel is \emptyset then Sel $\leftarrow \{ \arg \min_{i \in Close} l_i^t \}$; 15 $\mathcal{R}_{i}^{t} \leftarrow \frac{1}{|Sel|} \sum_{i \in Sel} \mathbf{x}_{i}^{t}$; 16 Broadcast $\mathbf{x}_{i}^{(t+1)} \leftarrow \alpha \mathbf{x}_{i}^{(t)} + (1-\alpha)\mathcal{R}_{i}^{t} - \eta_{t} \boldsymbol{g}_{i}^{(t)}$; 17

Select a pool of canditates and further filter out those with higher loss than local estimate

PROS

- Check candidates' distance
 AND loss value
- Does at least as well as being alone

CONS

- Compute loss at many values
- Need to know b_i for each node
- Many hyperparameters $(lpha,\eta,\epsilon)$
- Not very elegant

Existing algorithms – Summary

- Many different assumptions and definitions: Lack of a unified framework.
- Most methods have been adapted directly from the federated learning setting.
- Almost all are based on euclidean distance
- Analysis only focuses on the average of the parameters, or some linear combination of the local losses.
- Analysis is always asymptothical and is almost never compared to Local SGD.

Convergence Analysis

We would like to bound the function suboptimality, under reasonable assumptions. **Proof idea :**

• Approximate Byzantine-resilient DeSGD by a Byzantine-free weighted Gossip SGD algorithm:

$$\widehat{\mathbf{X}}_{\mathcal{R}}^{(t)} := \mathtt{Aggr}(\mathbf{X}^{(t)}) pprox \mathbf{X}_{\mathcal{R}}^{(t)} \boldsymbol{M}_t$$

 $\bigcirc M_t$ is a weighted mixing matrix given by the graph.

- Compute finite time convergence rates for weighted Gossip SGD:
 - 1. Focus on the average "good" parameters $\overline{\mathbf{x}}^{(t)} = \frac{1}{N} {\sum_{i=1}^N} \mathbf{x}_i(t)$
 - 2. Obtain recursion for mean error term $F(\overline{\mathbf{x}}^{(T)}) F(\mathbf{x}^*)$
 - 3. Bound the consensus variation $\Xi_T = \frac{1}{N} \sum_{i=1}^N \mathbb{E} \left\| \hat{\mathbf{x}}_i^{(T)} \overline{\mathbf{x}}^{(T)} \right\|^2$ and its weighted time average $\sum_{t=0}^T w_t \Xi_t$.

4. Combine 2. and 3. to bound the suboptimality $\mathbb{E} \left\| \nabla F(\overline{\mathbf{x}}^{(T)}, \boldsymbol{\xi}) \right\|^2$.

Convergence Analysis

Theorem (Average parameters recursion – Non-convex)

- Let f be an L-smooth function
- Let number of iterations T big enough
- Take fixed learning rate η = 1/√(T+1)
 Let average of parameters x̄^(t) = 1/_N∑^N_{i=1}x_i(t)
- Suppose Aggr $\equiv M_t$ symmetric mixing matrix

Note: Stricter bound for strongly convex objectives.

Then.

$$\frac{1}{T+1} \sum_{t=0}^{T} \left\| \mathbb{E} \nabla f(\overline{\mathbf{x}}^{(t)}) \right\|^2 \leq \mathcal{O}\left(\frac{\mathbb{E} \left[f(\overline{\mathbf{x}}^{(0)}) - f(\mathbf{x}^*) \right]}{\sqrt{T+1}} + \left(\frac{1}{N} + \frac{\lambda_2^2}{3} \right) \frac{\sigma^2}{\sqrt{T+1}} \right),$$

with

$$N =$$
 number of nodes $\sigma^2 = \sup \mathbb{E} \|\nabla f(\mathbf{x}) - \mathbb{E} \nabla f(\mathbf{x})\|^2$
 $\lambda_2 = up. bound on second eig.val. of $M_t$$

Experimental analysis

We perform experiments on the MNIST dataset. We train a Convolutional Neural Network for the Handwritten Digit Classification task.

- T = 300 iterations
- Learning rate $\eta = 0.2$ for 100 steps then $\eta = 0.1$
- Minibatches of 32 samples per node

Objectives

- 1. Understand the implications of the convergence bound.
- 2. Study the effects of Byzantine attacks on some aggregation rules.

Experimental analysis - Byzantine free

We analyze how connectivity changes the learning curve (recall theorem)

(i) 20 indep. nodes

(iii) 8-regular graph, 20 nodes

(ii) 20 nodes fully connected

(iv) Cycle graph, 20 nodes

William Cappelletti (EPFL)

Experimental analysis – Byzantine robustness

Objective : Analyze the learning curves of two Robust DeSGD methods against two different attacks

Procedure

• Randomly sample (15, 0.4)-Erdos-Renyi graphs

Experimental analysis – Byzantine robustness

Objective : Analyze the learning curves of two Robust DeSGD methods against two different attacks.

Procedure

- Randomly sample (15, 0.4)-Erdos-Renyi graphs
- Add Byzantine agents and allow them to communicate to each regular node

Byzantine attacks

- Gauss: send a random sample from a multivariate standard Gaussian distribution
- LittleIsEnough: estimate the mean and variance of the vectors shared by the good workers and send an erroneous message which could go undetected

Experimental analysis - DKrum

(i) 3 Byzantines-Gauss

(iii) 3 Byz.-LittleIsEnough

(ii) 7 Byzantines-Gauss

(iv) 4 Byz.-LittleIsEnough

Local SGD

Experimental analysis - BRIDGE

(i) 3 Byzantines-Gauss

(iii) 2 Byz.-LittleIsEnough

(ii) 4 Byzantines-Gauss

(iv) 3 Byz.-LittleIsEnough

Local SGD

- We only showed two methods among many others
- Tradeoff between restrictive assumptions and convergence speed
- A defence strategy can be robust against some attacks and very weak against others
- A univocal characterization of robustness would help in *comparing* weaknesses and strengths of different methods

Recap

- Motivate and define Decentralized SGD
- Introduce Byzantine adversaries
- Review variants of DeSGD which claim robustness
- Prove convergence rates in Byzantine-free setting
- Analyse experimentally the learning curves for MNISTclassification with different graphs and settings

Future work

- Find a unifying characterization of Byzantine robustness
 - → Allow for varying number of Byzantine and regular nodes. Include proposed methods by limiting the assumptions
- Approximate Aggr in linear form with only good nodes, bounding the error introduced by Byzantine agents

→ This let us easily generalize the convergence bounds

- Generalize convergence proof to non-symmetric mixing
 - → Very few graphs allow symmetric weghts, but the results seem to hold for a general setting.
- Find a proof strategy to bound local convergence rates
 - \rightarrow Allows to compare proposed methods against Local SGD

Thank you for your attention!

Appendix

Assumptions

Assumption 1 (Bounded gradients)

The stochastic component $\delta(\mathbf{x}) = g(\mathbf{x}) - \hat{g}(\mathbf{x})$ follows a distribution $(0, \Sigma_{\mathbf{x}})$ and has bounded squared norm, for all $\mathbf{x} \in \mathbb{R}^d$ I.e. for all $\mathbf{x} \in \mathbb{R}^d$

$$\mathbb{E}\left\|\boldsymbol{\delta}(\mathbf{x})\right\|^{2} \leq \sigma^{2}.$$
 (1)

Assumption 2 (Byzantine-free)

All of the N agents in the graph are regular workers following Decentalized SGD.

Assumption 3 (Symmetric mixing)

We suppose that the mixing matrices M_t are symmetric, and thus doubly stochastic, for all $t \ge 0$.

Assumption 4 (Nonnul spectral gap)

The second eigenvalue $\lambda_{2,T}$ of M_t is strictly smaller than 1 for all $t \ge 0$. Note that since $\lambda_{2,T} < 1$, then $\lambda_{2,T}^2 < \lambda_{2,T}$. This implies that the spectral gap ρ_t of M_t^2 , defined as the difference between the first two eigenvalues, is always greater than zero. Also, there exist a positive lower bound $\rho = \inf_t {\rho_t}$ on the spectrals gaps.

Assumption 5 (Smoothness)

The empirical risk function f is *L*-smooth, as defined in (??), with respect to the parameter vector \mathbf{x} , for any random vector $\boldsymbol{\xi}$.

Lemmas

Useful notation

$$\Xi_T = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left\| \hat{\mathbf{x}}_i^{(T)} - \overline{\mathbf{x}}^{(T)} \right\|^2,$$

$$r_T = \mathbb{E} \left[f(\overline{\mathbf{x}}^{(T)}) - f(\mathbf{x}^*) \right] = F(\overline{\mathbf{x}}^{(T)}) - F(\mathbf{x}^*),$$

$$e_T = \left\| \nabla F(\overline{\mathbf{x}}^{(T)}, \boldsymbol{\xi}) \right\|^2.$$

Lemma (Error recursion - Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. The average of the parameters at iteration T produced by De-SGD, with constant leraning rate η satisfies

$$r_{T+1} \le r_T + \left(L\eta^2 - \frac{\eta}{2}\right)e_T + \frac{L^2\eta + 2L^3\eta^2}{2}\Xi_T + \frac{L\eta^2}{2N}\sigma^2.$$
 (2)

Lemmas

Lemma (Consensus convergence - Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. With $\rho_T = 1 - \lambda_{T,2}^2$ the spectral gap of the squared mixing matrix M_T^2 , we have

$$\Xi_T \le \left(1 - \frac{\rho_T}{2} + \frac{6L^2\eta^2}{\rho_T}\right) \Xi_{T-1} + \frac{6\eta^2}{\rho_T} e_{T-1} + (1 - \rho_T) \eta^2 \sigma^2.$$
(3)

Furthermore, if we use a fixed learning rate $\eta \leq \frac{\rho}{2\sqrt{6}L}$, with ρ a lower bound on the spectral gaps; and we define a series of weights $\{w_t\}_{t\geq 0} \subset \mathbb{R}_+$ such that $w_{t+1} \leq w_t \left(1 + \frac{\rho}{8}\right)$, we can bound

$$\sum_{t=0}^{T} w_t \Xi_t \le \frac{48L}{\rho^2} \eta^2 \sum_{t=0}^{T} w_t e_t + 4\eta^2 \sigma^2 \left(\frac{1}{\rho} - 1\right) W_T.$$
(4)

Theorems

Theorem (Average parameters recursion – Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. Denote by $\overline{\mathbf{x}}^{(t)}$ the average of the parameters across all nodes at iteration t and let $\mathbf{x}^{(0)}$ be the common starting point. Then, taking a fixed learning rate $\eta \leq \min\left\{\frac{\rho}{12\sqrt{2}L}, \frac{\rho}{12\sqrt{2}L^{1.5}}\right\}$, we have the following convergence rate:

$$\frac{1}{T+1}\sum_{t=0}^{T} e_t \le \frac{4r_0}{(T+1)\eta} + 2L\eta \left(\frac{1}{N} + \frac{1-\rho}{3}\right)\sigma^2.$$
 (5)

Corollary

Under Theorem 23 conditions, with fixed learning rate $\eta = \frac{1}{\sqrt{T+1}}$, we have

$$\frac{1}{T+1}\sum_{t=0}^{T}e_t \le \tilde{\mathcal{O}}\left(\frac{r_0}{\sqrt{T+1}} + \left(\frac{1}{N} + \frac{1-\rho}{3}\right)\frac{\sigma^2}{\sqrt{T+1}}\right).$$
(6)

Strongly convex case

Useful notation

$$\Xi_T = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left\| \hat{\mathbf{x}}_i^{(T)} - \overline{\mathbf{x}}^{(T)} \right\|^2$$
$$r_T = \mathbb{E} \left\| \overline{\mathbf{x}}^{(T)} - \mathbf{x}^* \right\|^2$$
$$e_T = \mathbb{E} \left[f(\overline{\mathbf{x}}^{(T)}) - f(\mathbf{x}^*) \right] = F(\overline{\mathbf{x}}^{(T)}) - F(\mathbf{x}^*)$$

Assumption 6 (Strong convexity)

The risk function f is μ -strongly convex with respect to the parameter vector \mathbf{x} , for all random vectors $\boldsymbol{\xi} \in \mathcal{X}$.

We say that f is μ -strongly convex, for some $\mu > 0$ if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ the following holds:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$
(7)

Strongly convex case - Theorem

Theorem (Average convergenge rate – μ -convex)

Let assumptions 1, 2, 3, 4, 5, 6 hold. Denote by $\overline{\mathbf{x}}^{(t)}$ the average of the parameters across all nodes at iteration t and let $\mathbf{x}^{(0)}$ be the common starting point. Then, taking a fixed learning rate $\eta_t = \eta \leq \frac{\rho}{8\sqrt{6L}}$, and a sequence of weights $w_t = \left(1 - \frac{\eta\mu}{2}\right)^{-(t+1)}$. we have the following convergence rate:

$$\frac{1}{W_T} \sum_{t=0}^{T} w_t e_t + \frac{\mu}{2} r_{T+1} \le \frac{r_0}{\eta} \exp\left\{-(T+1)\frac{\eta\mu}{2}\right\} + \eta\left(\frac{1-\rho}{2} + \frac{1}{N}\right) \sigma^2.$$
(8)

Corollary

With a fixed learning rate
$$\eta \leq \min\left\{\frac{2\ln(T^2)}{\mu T}, \frac{\rho}{8\sqrt{6L}}\right\}$$
, we have

$$\frac{1}{W_T} \sum_{t=0}^T w_t e_t + \frac{\mu}{2} r_{T+1} \le \tilde{\mathcal{O}} \left(\frac{r_0}{T} + \left(\frac{1-\rho}{2} + \frac{1}{N} \right) \frac{\sigma^2}{T} \right).$$
(9)