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Stochastic Optimization

The setting

Data: ξ ∼ D

Parameters: x ∈ Rd
f(x, ξ)

Rd ×X → R

The goal

We are interested in minimizing the expected risk w.r.t. x:

F (x) = Eξ [f(x, x)]

We do so through the empirical version. With ξ1, . . . , ξn iid sample from D:

F̂ (x) :=
1

n

n∑
i=1

f(x, ξi)
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Stochastic Gradient Descent

Algorithm: SGD

Input: x(0) initial guess, T
number of iterations,
{ηt}t<T learning rates.

1 for t = 0, . . . , T − 1 do
2 Sample ξt ∼ D ;

3 g(t) ← ∇f(x(t), ξt) ;

4 x(t+1) ← x(t) − ηtg(t) ;

5 return x(T )

x(t)

x(t+1)

−ηtg(t)

The more samples we include to compute g(t), the more its
estimate is precise. We call this mini-batch SGD.
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Stochastic Gradient Descent

Limitations of (batch)-SGD

• Slow gradient computations

$ Parallelization on distributed
systems.

• NO Data privacy

$ Give each node its own data:
only share x(t) and g

(t)
i .

• Bottlenecks and prone to failures

$ Need to change framework!
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Decentralized Optimization

Define a decentralized setting

• We have a bunch of computers V
• They generate a communication graph
G = (V, E)

• Each node has its own state xi and local
data ξi

• Goal: minimize local objectives

arg min
xi,i∈V

∑
i∈V

Eξ [f(xi, ξ)]

and achieve consensus:

xi = xj ∀i, j ∈ V

õ

x0, ξ0

õ

x1, ξ1

õ

x2, ξ2

õ

x3, ξ3

õ

x4, ξ4

õ

x5, ξ5
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Decentalized Stochastic Gradient Descent

Algorithm: Gossip SGD

Input: x(0) initial guess, max T ,
{ηt}t<T learning rates,
G = (V, E) comm. graph

1 Init x
(0)
i ← x(0) for all i ∈ V ;

2 for t = 0, . . . , T − 1 do
// in parallel for each i ∈ V

3 Collect X
(t)
i :=

{
x
(t)
j : j ∈ Ni

}
;

4 x
(t)
i ← 1

|Ni|+1

(∑
j x

(t)
j + x

(t)
i

)
;

5 Sample ξti ∼ D ;

6 g
(t)
i ← ∇f(x

(t)
i , ξti) ;

7 Broadcast x
(t+1)
i ← x

(t)
i − ηtg

(t)
i ;

õ

õõ

õ

õ õ

x
(t)
2

x
(t)
2ξt2, x
(t+1)
2
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New problems

What if?

• What would happen if some node fails?

• What if some malicious entity infiltrates the network?
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The Byzantine setting

Under the decentralized learning assumptions, we add Byzantine adversaries.

Definition
A Byzantine agent i has

• complete knowledge of the network state

• can send an arbitrary message x
(t)
i,j to each neighboring node j.
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What are the objectives?

õ
For a worker

$ Learn the optimal parameters

$ Speed up convergence w.r.t.
working alone

®
For an attacker

• Break down the system

• Slow down convergence
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Robust Decentalized SGD

Algorithm: Robust De-SGD

Input: x(0) initial guess, max T ,
{ηt}t<T learning rates,
G = (V, E) comm. graph

1 Init x
(0)
i ← x(0) for all i ∈ V ;

2 for t = 0, . . . , T − 1 do
// in parallel for each i ∈ V

3 Collect X
(t)
i :=

{
x
(t)
j : j ∈ Ni

}
;

4 x̂
(t)
i ← Aggr

(
x
(t)
i ,X

(t)
i

)
;

5 Sample ξti ∼ D ;

6 g
(t)
i ← ∇f(x̂

(t
i , ξ

t
i) ;

7 Broadcast x
(t+1)
i ← x̂

(t)
i − ηtg

(t)
i ;

Function Aggr

Input: A set of vectors
{v1, . . . ,vM} ⊂ Rd

Output: v̂ a robust estimate of
the mean v of good nodes

õ

õ®

õ

õ õ
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Existing algorithms

What has been done ?
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Existing algorithms – Trimmed Mean

Function TrimmedMean
Input: b upper bound on # Byzantine,

set {x1, . . . ,xM} ⊂ Rd

1 Init an empty x̂ ;
2 foreach k ∈ [d] do

3 Sort
{

[x1]k, . . . , [xM ]k

}
as

{x(1), . . . , x(M)} ;

// Average, discarding the

lowest and highest b:

4 [x̂]k ← 1
M−2b

∑M−b
k=b+1 x(k) ;

5 return x̂

ÿ Average each coordinate by
excluding extreme values

PROS
• Easy to understand

CONS
• Each node needs at least 2b

neighbors

BRIDGE

Applying TrimmedMean to the parameters from neighboring nodes and always
including the local parameters corresponds to the BRIDGE algorithm.
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Existing algorithms – Krum and Bulyan

Function Krum
Input: b upper bound on # Byzantine,

set {x1, . . . ,xM} ⊂ Rd

1 foreach i ∈ [M ] do
2 Identify the M − b− 2 closest points

to xi into Ñi;
3 si ←

∑
j∈Ñi

‖xi − xj‖2 ;

4 return x̂← arg mini∈[M ] {si}

Function Bulyan

Input: b upper bound on # Byzantine,
set X = {x1, . . . ,xM} ⊂ Rd

1 Select← ∅ ;
2 while |Select| < M − 2b do
3 xs ← Krum(X \ Select) ;
4 Select← Select ∪ {xs} ;

5 return x̂← TrimmedMean(Select)

ÿ Krum: Find a candidate which is
central even after removing nodes

ÿ Bulyan: Take another Aggr rule
and make it stronger

PROS
• Convergence in the parameter

server setting

CONS
• Very strict assumptions for

analysis.

• Convergence does not imply
optimality.

• Each node needs at least 2b
neighbors, > 4b for Bulyan.

William Cappelletti (EPFL) Master Thesis 4 February 2021 17 / 34



Existing algorithms – ByGARS

Algorithm: ByGARS++

1 Init x
(0)
i ← x(0) for all i ;

2 Init q
(0)
i ← 0 for all i ;

3 foreach i good worker, at step t do

4 Collect Ht :=
{
g
(t)
j : j ∈ Ni

}
;

5 Sample ξti ∼ D ;

6 g
(t)
i ← ∇f(x̂

(t)
i , ξti) ;

7 x
(t+1)
i ← x

(t)
i − ηtHtq

(t)
i ;

8 q
(t+1)
i ← (1− αt)qt + αtHtg

(t)
i ;

9 Broadcast g
(t)
i ;

ÿ Score neighbors by how much
they align to the validation grad

PROS
• Validate recieved gradients

against local

• Memory of the past through
scores qi

CONS
• Not sharing parameters

(adapted from distributed)

• Analysis only assume (almost)
fixed multiplicative noise

• Does not use local grad to move
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Existing algorithms – MOZI

Algorithm: MOZI

Input: x(0), max T , {ηt}t<T , # byz ngbs bi,
tolerance ε

1 Init x
(0)
i ← x(0) for all i ∈ V ;

2 for t ∈ [T − 1] do
// in parallel for each i ∈ V

3 Collect x
(t)
j for j ∈ Ni ;

4 Sample ξti ∼ D ;

5 lti ← f(x
(t)
i , ξti) ;

6 g
(t)
i ← ∇f(x

(t)
i , ξti) ;

7 for j ∈ Ni do
8 di,j ←

∥∥∥x(t)
i − x

(t)
j

∥∥∥ ;

9 Close← arg min N∗⊆Ni,
|N∗|=M−bi

∑
j∈N∗ di,j ;

10 Sel← ∅ ;
11 for j ∈ Close do

12 ltj ← f(x
(t)
j , ξti) ;

13 if lti − ltj ≥ ε then
14 Sel← Sel ∪ {j} ;

15 if Sel is ∅ then Sel← {arg minj∈Close l
t
j} ;

16 Rti ← 1
|Sel|

∑
j∈Sel x

t
i ;

17 Broadcast x
(t+1)
i ← αx

(t)
i + (1−α)Rti− ηtg

(t)
i ;

ÿ Select a pool of canditates and
further filter out those with
higher loss than local estimate

PROS
• Check candidates’ distance

AND loss value

• Does at least as well as being
alone

CONS
• Compute loss at many values

• Need to know bi for each node

• Many hyperparameters (α, η, ε)

• Not very elegant
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Existing algorithms – Summary

• Many different assumptions and definitions:
Lack of a unified framework.

• Most methods have been adapted directly from the federated
learning setting.

• Almost all are based on euclidean distance

• Analysis only focuses on the average of the parameters, or
some linear combination of the local losses.

• Analysis is always asymptothical and is almost never compared
to Local SGD.
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Convergence Analysis

We would like to bound the function suboptimality, under reasonable assumptions.
Proof idea :

• Approximate Byzantine-resilient DeSGD by a Byzantine-free weighted
Gossip SGD algorithm:

X̂
(t)

R := Aggr(X(t)) ≈ X
(t)
RMt

ÿ Mt is a weighted mixing matrix given by the graph.

• Compute finite time convergence rates for weighted Gossip SGD:

1. Focus on the average “good” parameters x(t) = 1
N

∑N
i=1xi(t)

2. Obtain recursion for mean error term F (x(T ))− F (x∗)

3. Bound the consensus variation ΞT = 1
N

∑N
i=1E

∥∥∥x̂(T )
i − x(T )

∥∥∥2
and its weighted time average

∑T
t=0wtΞt.

4. Combine 2. and 3. to bound the suboptimality E
∥∥∥∇F (x(T ), ξ)

∥∥∥2.
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Convergence Analysis

Theorem (Average parameters recursion – Non-convex)

• Let f be an L-smooth function

• Let number of iterations T big enough

• Take fixed learning rate η = 1√
T+1

• Let average of parameters x(t) = 1
N

∑N
i=1xi(t)

• Suppose Aggr ≡Mt symmetric mixing matrix

Then,

1

T + 1

T∑
t=0

∥∥∥E∇f(x(t))
∥∥∥2 ≤ O

E
[
f(x(0))− f(x∗)

]
√
T + 1

+

(
1

N
+
λ22
3

)
σ2

√
T + 1

 ,

with

N = number of nodes σ2 = supE ‖∇f(x)− E∇f(x)‖2
λ2 = up. bound on second eig.val. of Mt

Note: Stricter bound for
strongly convex objectives.
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Experimental analysis

We perform experiments on the MNIST dataset. We train a Convolutional
Neural Network for the Handwritten Digit Classification task.

• T = 300 iterations

• Learning rate η = 0.2 for 100 steps then η = 0.1

• Minibatches of 32 samples per node

Objectives

1. Understand the implications of the convergence bound.

2. Study the effects of Byzantine attacks on some aggregation rules.
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Experimental analysis – Byzantine free

We analyze how connectivity changes the learning curve (recall theorem)
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(iv) Cycle graph, 20 nodes
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Experimental analysis – Byzantine robustness

Objective : Analyze the learning curves of two Robust DeSGD methods against
two different attacks

Procedure

• Randomly sample (15, 0.4)-Erdos-Renyi graphs

Example

(i) Byzantine-free (15, .4)-ER graph
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(ii) Gossip SGD on (15, .4)-ER graph

William Cappelletti (EPFL) Master Thesis 4 February 2021 26 / 34



Experimental analysis – Byzantine robustness

Objective : Analyze the learning curves of two Robust DeSGD methods against
two different attacks.

Procedure

• Randomly sample (15, 0.4)-Erdos-Renyi graphs

• Add Byzantine agents and allow them to communicate to each
regular node

Byzantine attacks

• Gauss: send a random sample from a multivariate standard Gaussian
distribution

• LittleIsEnough: estimate the mean and variance of the vectors
shared by the good workers and send an erroneous message which could
go undetected
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Experimental analysis – DKrum

Local
Average Test

Local SGD
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(i) 3 Byzantines-Gauss
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Experimental analysis – BRIDGE

Local
Average Test

Local SGD
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Experimental analysis – Comments

• We only showed two methods among many others

• Tradeoff between restrictive assumptions and convergence speed

• A defence strategy can be robust against some attacks and very
weak against others

• A univocal characterization of robustness would help in comparing
weaknesses and strengths of different methods
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Recap

• Motivate and define Decentralized SGD

• Introduce Byzantine adversaries

• Review variants of DeSGD which claim robustness

• Prove convergence rates in Byzantine-free setting

• Analyse experimentally the learning curves for MNIST-
classification with different graphs and settings
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Future work

• Find a unifying characterization of Byzantine robustness

$ Allow for varying number of Byzantine and regular nodes.
Include proposed methods by limiting the assumptions

• Approximate Aggr in linear form with only good nodes, bounding
the error introduced by Byzantine agents

$ This let us easily generalize the convergence bounds

• Generalize convergence proof to non-symmetric mixing

$ Very few graphs allow symmetric weghts, but the results seem
to hold for a general setting.

• Find a proof strategy to bound local convergence rates

$ Allows to compare proposed methods against Local SGD
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The End

Thank you for your attention!

�
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Appendix
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Assumptions

Assumption 1 (Bounded gradients)

The stochastic component δ(x) = g(x)− ĝ(x) follows a distribution (0,Σx) and
has bounded squared norm, for all x ∈ Rd I.e. for all x ∈ Rd

E ‖δ(x)‖2 ≤ σ2. (1)

Assumption 2 (Byzantine-free)

All of the N agents in the graph are regular workers following Decentalized SGD.

Assumption 3 (Symmetric mixing)

We suppose that the mixing matrices Mt are symmetric, and thus doubly
stochastic, for all t ≥ 0.
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Assumptions

Assumption 4 (Nonnul spectral gap)

The second eigenvalue λ2,T of Mt is striclty smaller than 1 for all t ≥ 0.
Note that since λ2,T < 1, then λ22,T < λ2,T . This implies that the spectral gap ρt
of M2

t , defined as the difference between the first two eigenvalues, is always
greater than zero.
Also, there exist a positive lower bound ρ = inft {ρt} on the spectrals gaps.

Assumption 5 (Smoothness)

The empirical risk function f is L-smooth, as defined in (??), with respect to the
parameter vector x, for any random vector ξ.
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Lemmas

Useful notation

ΞT =
1

N

N∑
i=1

E
∥∥∥x̂(T )

i − x(T )
∥∥∥2 ,

rT = E
[
f(x(T ))− f(x∗)

]
= F (x(T ))− F (x∗),

eT =
∥∥∥∇F (x(T ), ξ)

∥∥∥2 .
Lemma (Error recursion - Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. The average of the parameters at iteration T
produced by De-SGD, with constant leraning rate η satisfies

rT+1 ≤ rT +
(
Lη2 − η

2

)
eT +

L2η + 2L3η2

2
ΞT +

Lη2

2N
σ2. (2)
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Lemmas

Lemma (Consensus convergence - Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. With ρT = 1− λ2T,2 the spectral gap of the
squared mixing matrix M2

T , we have

ΞT ≤
(

1− ρT
2

+
6L2η2

ρT

)
ΞT−1 +

6η2

ρT
eT−1 + (1− ρT ) η2σ2. (3)

Furthermore, if we use a fixed learning rate η ≤ ρ

2
√
6L

, with ρ a lower bound on

the spectral gaps; and we define a series of weights {wt}t≥0 ⊂ R+ such that
wt+1 ≤ wt

(
1 + ρ

8

)
, we can bound

T∑
t=0

wtΞt ≤
48L

ρ2
η2

T∑
t=0

wtet + 4η2σ2

(
1

ρ
− 1

)
WT . (4)
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Theorems

Theorem (Average parameters recursion – Non-convex)

Let assumptions 1, 2, 3, 4, 5 hold. Denote by x(t) the average of the parameters
across all nodes at iteration t and let x(0) be the common starting point. Then,

taking a fixed learning rate η ≤ min
{

ρ

12
√
2L
, ρ

12
√
2L1.5

}
, we have the following

convergence rate:

1

T + 1

T∑
t=0

et ≤
4r0

(T + 1)η
+ 2Lη

(
1

N
+

1− ρ
3

)
σ2. (5)

Corollary

Under Theorem 23 conditions, with fixed learning rate η = 1√
T+1

, we have

1

T + 1

T∑
t=0

et ≤ Õ
(

r0√
T + 1

+

(
1

N
+

1− ρ
3

)
σ2

√
T + 1

)
. (6)
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Strongly convex case

Useful notation

ΞT =
1

N

N∑
i=1

E
∥∥∥x̂(T )

i − x(T )
∥∥∥2

rT = E
∥∥∥x(T ) − x∗

∥∥∥2
eT = E

[
f(x(T ))− f(x∗)

]
= F (x(T ))− F (x∗)

Assumption 6 (Strong convexity)

The risk function f is µ-strongly convex with respect to the parameter vector x,
for all random vectors ξ ∈ X .
We say that f is µ-strongly convex, for some µ > 0 if ∀x,y ∈ Rd the following
holds:

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2 . (7)
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Strongly convex case – Theorem

Theorem (Average convergenge rate – µ-convex)

Let assumptions 1, 2, 3, 4, 5, 6 hold. Denote by x(t) the average of the
parameters across all nodes at iteration t and let x(0) be the common starting
point. Then, taking a fixed learning rate ηt = η ≤ ρ

8
√
6L

, and a sequence of

weights wt =
(
1− ηµ

2

)−(t+1)
. we have the following convergence rate:

1

WT

T∑
t=0

wtet +
µ

2
rT+1 ≤

r0
η

exp
{
−(T + 1)

ηµ

2

}
(8)

+η

(
1− ρ

2
+

1

N

)
σ2.

Corollary

With a fixed learning rate η ≤ min
{

2 ln(T 2)
µT , ρ

8
√
6L

}
, we have

1

WT

T∑
t=0

wtet +
µ

2
rT+1 ≤ Õ

(
r0
T

+

(
1− ρ

2
+

1

N

)
σ2

T

)
. (9)
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