
LATEX TikZposter

Byzantine-robust decentralized optimization
for Machine Learning

William Cappelletti— ING-MATHMaster Project, Autumn 2020
Supervisors: Prof. M. Jaggi, Prof. E. Abbé, S.P.R. Karimireddy, L. He

Byzantine-robust decentralized optimization
for Machine Learning

William Cappelletti— ING-MATHMaster Project, Autumn 2020
Supervisors: Prof. M. Jaggi, Prof. E. Abbé, S.P.R. Karimireddy, L. He

Introduction

The goal : Numerical minimization of a stochastic function f :
x∗ = arg min

x∈Rd

{
Eξ∼Df (x, ξ)

}
with

 x ∈ Rd parameter vector,
ξ ∼ D random vector (unknown distibution D).

The setting : A network of computers with local data ξi ∼ D and parameters xi collaborates to findthe optimal parameters x∗. They can only share local estimates xi.
We study : The convergence rates of such decentalized algorithms and the effects of adversarial

agents on the learning process.

Definitions

Stochastic Gradient Descent

We suppose that f is differentiable w.r.t. x.Our minimization strategy is based on Stochastic Gradient Descent.
Iteratively : • Sample ξt ∼ D;

• Compute the stochastic gradient g(t) := ∇f (x(t), ξt)
at current estimate x(t);
• Take a step towards−g(t), scaled by a learning rate ηt,obtaining a new estimate x(t+1).

x(t)

x(t+1)

−ηtg(t)

Decentralized SGD

In decentralized learning we have a set of computers V in a communication graph G = (V , E).
Properties : • An edge (ei,j) = (i, j) is in E iff node i can communicate to node j;

• Each node i knows the set of its neighbors Ni;
• Each computer keeps a local parameter vector, or state, xi and can access local samples ξi ∼ D.

Algorithm 1: Decentralized SGD
Input: x(0) initial guess, max T ,

{ηt}t<T learning rates, G = (V , E) comm.graph
1 Init x(0)

i ← x(0) for all i ∈ V ;
2 for t = 0, . . . , T − 1 do

// in parallel for each i ∈ V
3 Collect X(t)

i :=
{
x
(t)
j : j ∈ Ni

} ;
4 x̂

(t)
i ← Aggr

(
x
(t)
i ,X

(t)
i

) ;
5 Sample ξti ∼ D ;
6 g

(t)
i ← ∇f (x̂

(t)
i , ξ

t
i) ;

7 Broadcast x(t+1)
i ← x̂

(t)
i − ηtg

(t)
i ;

8 end

Function Aggr
Input: A set of vectors {v1, . . . ,vM} ⊂ Rd

Output: v̂ robust estimate of the mean v

õ

õõ

õ

õ õ

(1)
x
(t)
2

õ

õõ

õ

õ õ

(2)
x
(t)
2

x
(t)
1

x
(t)
4

x
(t)
5

õ

õõ

õ

õ õ

(3)
x̂
(t)
2ξt2,

õ

õõ

õ

õ õ

(4)
x
(t+1)
2

x
(t+1)
2

x
(t+1)
2

Fig. 2: Representation of one step t of Decentralized SGD.
(1) The focus is on a single node and its neighbors. (2) The worker i
gathers parameter vectors from neighboring nodes. (3) It aggregates

them into x̂
(t)
i and performs an SGD step with a local sample.

(4) Finally, it broadcasts its updated parameters.
ÿ Regular workers agree on an aggregation strategy Aggr, which should be robust to attacks.
If Aggr is the arithmetic mean, Algorithm 1 is known as Gossip SGD. If there are adversarial agentsaveraging the parameters leads to severe failure.

Convergence analysis

Theorem 1 Average parameters recursion – Non-convex [2]
LetX(t) be the set of vectors computed at time t by Algorithm 1 (Decentralized SGD) and let:
• f be anL-smooth function, • number of iterations T big enough,
• fixed learning rate η = 1√

T+1
, • x(0) be the common starting point,

• x(t) = 1
N

∑N
i=1x

(t)
i , • Aggr be a symmetric mixing matrix at all steps.

Then, without any failure or adversaries in the graph,

1

T + 1

T∑
t=0

∥∥∥E∇f (x(t))∥∥∥2 ≤ O
E

[
f (x(0))− f (x∗)

]
√
T + 1

+

(
1

N
+
λ22
3

)
σ2

√
T + 1

 ,
with
•N = number of nodes, • λ2 = up. bound on second eig.val. of Aggr,
• σ2 = up.bound on the trace of the covariance of stoch. gradients E ‖∇f (x)− E∇f (x)‖2.

Comments

With a fixed learning rate η the suboptimality of the average parameters x(T ), i.e. the squared normof their gradient, decrases sub-linearly in the number of iterations T .
The second term depends on the bound σ2 on gradients stochasticity. We can reduce this noise byincreasing the number of agentsN , and by reducing λ2, the second eigenvalue of Aggr.
ÿ λ2 is 0 for a fully connected graph and, indicatively, increases the fewer edges are in thegraph, getting to one for disconnected ones.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 3: 20 independent nodes.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test
Test at x(t)

Fig. 4: 20 nodes, gossip average
on fully connected graph.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test
Test at x(t)

Fig. 5: 20 nodes, gossip average
on 4-regular graph.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test
Test at x(t)

Fig. 6: 20 nodes, gossip average
on cycle graph.

Figures. Experiments on training a CNN on the MNIST dataset confirm the theoretical analysis.

Byzantine robustness

ÿWe give a very broad definition, to allow for powerful adversaries and worst case scenarios.
Byzantine agents
Definition. Let G = (V , E) be a communication graph, a node i is a
Byzantine agent if
1. It has complete knowledge of the states of all nodes in the network,at each moment;
2. It can send arbitrary messages x(t)i,j to each neighboring node j.
Objective : Slow down, or even disrupt, the learning procedure.

õ

õ®

õ

õ õ

Can good workers benefit from collaboration, by implementing a “good” Aggr function?
There is no agreement in the literature about the characterization of robustness. This precludes atheoretical comparison of different methods. We resort to experimental analysis.

Experiments

ÿ We analyze the learning curves of Decentralized SGD for theclassification of MNIST through a Convolutional Neural Network.
Setting

• We randomly sample Erdos-Renyi graphs on 15 nodes, withan edge probability of 0.4(average of 5.6 neighbors per node).
• Byzantine agents are added to such graphs and allowed tocommunicate to each regular node.
Attacks

• Gauss attack: send a random sample from amultivariate stan-dard Gaussian distribution.
• LittleIsEnough attack: estimate the mean and variance ofthe vectors shared by the good workers and send arbitraryerroneous messages which could go undetected [1].

Fig. 7: Byzantine-free (15,0.4)-ER sample graph.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 8: Gossip SGD on (15,0.4)-ER graph.
DKrum

ÿ Choose as x̂(t)i the vector which is closer to itsM−b−2 neighboring vectors in euclideandistance [3].M is the number of neighbors (counting oneself) and b is the up. bound onByz. nodes; ifM < b + 2 revert to Local SGD.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 9: 3 Byz: Gauss.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 10: 7 Byz: Gauss.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5
Lo

ss
 v

alu
e

Local
Average Test

Fig. 11: 3 Byz: LittleIsEnough.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 12: 4 Byz: LittleIsEnough.
Results : • Robust to Gaussian attack, but weak vs LittleIsEnough.

• Three LittleIsEnough attackers do the same damage as seven Gaussian.
• With four LittleIsEnough it performs worse than Local SGD (see Fig. 3).

BRIDGE

ÿ Compute x̂
(t)
i coordinatewise by discarding the b (up. bound on Byz. nodes) lowest andhighest values (trimming) and averaging the remaining with the local estimate [4]. If anode has less than 2b + 1 neighbors, it reverts to Local SGD.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 13: 3 Byz: Gauss.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 14: 4 Byz: Gauss.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 15: 2 Byz: LittleIsEnough.

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
alu

e

Local
Average Test

Fig. 16: 3 Byz: LittleIsEnough.
Results : • This algorithm is very restrictive, as with four adversaries it reverts to Local SGD.

• Average convergence against three Gauss adversaries is better than DKrum.
• LittleIsEnough attack disrupts BRIDGEmore than DKrum, with one fewer Byz. agent.

Conclusions
Many more attacks and defences have been proposed. Their assumptions are very different and,as we see with the proposed examples, there is a tradeoff between the imposed restrictions andthe convergence speed. Also, the same defence can be robust against some attacks and very weakagainst others.A univocal characterization of robustness would help in comparing weaknesses and strengths of dif-ferent methods. Furtermore, it could help in deriving convergence bounds in line with those wepresent for a Byzantine-free setting.
References

[1] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A Little Is Enough: Circumventing Defenses For Distributed Learning.2019. arXiv: 1902.06156 [cs.LG].
[2] William Cappelletti. “Byzantine-robust decentralized optimization for Machine Learning”. MA thesis. EPFL, 2021.
[3] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The Hidden Vulnerability of Distributed Learning in
Byzantium. 2018. arXiv: 1802.07927 [stat.ML].

[4] Zhixiong Yang andWaheedUBajwa. “BRIDGE: Byzantine-resilient decentralized gradient descent”. In: arXiv preprint(2019). arXiv: 1908.08098.


