Byzantine-robust decentralized optimization for Machine Learning

William Cappelletti – ING-MATH Master Project, Autumn 2020

Supervisors: Prof. M. Jaggi, Prof. E. Abbé, S.P.R. Karimireddy, L. He

Introduction

The goal : Numerical minimization of a stochastic function f:

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \Big\{ \mathbb{E}_{{\boldsymbol{\xi}} \sim \mathcal{D}} f(\mathbf{x}, {\boldsymbol{\xi}}) \Big\}$$
 with

 $\mathbf{x} \in \mathbb{R}^d$ parameter vector,

random vector (unknown distibution \mathcal{D}).

 $-\eta_t \boldsymbol{g}^{(t)}$

 \Box

- **The setting :** A network of computers with local data $\xi_i \sim \mathcal{D}$ and parameters \mathbf{x}_i collaborates to find the optimal parameters \mathbf{x}^* . They can only share local estimates \mathbf{x}_i .
- We study: The convergence rates of such decentalized algorithms and the effects of adversarial agents on the learning process.

Definitions

Stochastic Gradient Descent

Byzantine robustness

 \bigcirc We give a very broad definition, to allow for powerful adversaries and worst case scenarios.

Byzantine agents

Definition. Let $\mathcal{G} = (\mathcal{V}, E)$ be a communication graph, a node *i* is a Byzantine agent if

- 1. It has complete knowledge of the states of all nodes in the network, at each moment;
- 2. It can send arbitrary messages $\mathbf{x}_{i,j}^{(t)}$ to each neighboring node j.

Objective : Slow down, or even disrupt, the learning procedure.

Can good workers *benefit from collaboration*, by implementing a "good" Aggr function?

There is no agreement in the literature about the characterization of robustness. This precludes a theoretical comparison of different methods. We resort to experimental analysis.

We suppose that f is differentiable w.r.t. x. Our minimization strategy is based on Stochastic Gradient Descent.

Iteratively: • Sample $\boldsymbol{\xi}^t \sim \mathcal{D}$;

- Compute the stochastic gradient $\boldsymbol{g}^{(t)} := \nabla f(\mathbf{x}^{(t)}, \boldsymbol{\xi}^t)$ at current estimate $\mathbf{x}^{(t)}$:
- Take a step towards $-\boldsymbol{g}^{(t)}$, scaled by a *learning rate* η_t , obtaining a new estimate $\mathbf{x}^{(t+1)}$.

Decentralized SGD

In decentralized learning we have a set of computers \mathcal{V} in a communication graph $\mathcal{G} = (\mathcal{V}, E)$.

- **Properties :** An edge $(e_{i,j}) = (i, j)$ is in *E* iff node *i* can communicate to node *j*;
 - Each node *i* knows the set of its neighbors \mathcal{N}_i ;
 - Each computer keeps a local parameter vector, or *state*, \mathbf{x}_i and can access local samples $\boldsymbol{\xi}_i \sim \mathcal{D}$.

Experiments

We analyze the learning curves of Decentralized SGD for the classification of MNIST through a Convolutional Neural Network.

Setting

- We randomly sample Erdos-Renyi graphs on 15 nodes, with an edge probability of 0.4 (average of 5.6 neighbors per node).
- Byzantine agents are added to such graphs and allowed to communicate to each regular node.

Attacks

- Gauss attack: send a random sample from a multivariate standard Gaussian distribution.
- LittleIsEnough attack: estimate the mean and variance of the vectors shared by the good workers and send arbitrary erroneous messages which could go undetected [1].

DKrum

 \mathbf{Q} Choose as $\hat{\mathbf{x}}_{i}^{(t)}$ the vector which is closer to its M - b - 2 neighboring vectors in euclidean distance [3]. M is the number of neighbors (counting oneself) and b is the up. bound on Byz. nodes; if M < b + 2 revert to Local SGD.

Fig. 7: Byzantine-free (15,0.4)-ER sample graph.

Input: A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_M\} \subset \mathbb{R}^d$ **Output:** $\hat{\mathbf{v}}$ robust estimate of the mean $\overline{\mathbf{v}}$

(1) The focus is on a single node and its neighbors. (2) The worker igathers parameter vectors from neighboring nodes. (3) It aggregates them into $\hat{\mathbf{x}}_{i}^{(t)}$ and performs an SGD step with a local sample. (4) Finally, it broadcasts its updated parameters.

Q Regular workers agree on an aggregation strategy Aggr, which should be robust to attacks.

If Aggr is the arithmetic mean, Algorithm 1 is known as Gossip SGD. If there are adversarial agents averaging the parameters leads to severe failure.

Convergence analysis

Theorem 1 Average parameters recursion – Non-convex [2]

Let $\mathbf{X}^{(t)}$ be the set of vectors computed at time t by Algorithm 1 (Decentralized SGD) and let:

- f be an L-smooth function,
- fixed learning rate $\eta = \frac{1}{\sqrt{T+1}}$,
- $\overline{\mathbf{x}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i^{(t)}$,
- \bullet number of iterations T big enough,
- $\mathbf{x}^{(0)}$ be the common starting point,
- Aggr be a symmetric mixing matrix at all steps.

Then, without any failure or adversaries in the graph,

$$\frac{1}{T+1} \sum_{t=0}^{T} \left\| \mathbb{E} \nabla f(\overline{\mathbf{x}}^{(t)}) \right\|^2 \le \mathcal{O}\left(\frac{\mathbb{E} \left[f(\overline{\mathbf{x}}^{(0)}) - f(\mathbf{x}^*) \right]}{\sqrt{T+1}} + \left(\frac{1}{N} + \frac{\lambda_2^2}{3} \right) \frac{\sigma^2}{\sqrt{T+1}} \right)$$

with

• N = number of nodes, • $\lambda_2 = up$. bound on second eig.val. of Aggr, • $\sigma^2 = up$. bound on the trace of the covariance of stoch. gradients $\mathbb{E} \|\nabla f(\mathbf{x}) - \mathbb{E} \nabla f(\mathbf{x})\|^2$.

Fig. 9: 3 Byz: Gauss.

Fig. 10: 7 Byz: Gauss Fig. 11: 3 Byz: LittleIsEnough.

Fig. 12: 4 Byz: LittleIsEnough

Results : • Robust to Gaussian attack, but weak vs LittleIsEnough.

Fig. 14: 4 Byz: Gauss

- Three LittleIsEnough attackers do the same damage as seven Gaussian.
- With four LittleIsEnough it performs worse than Local SGD (see Fig. 3).

BRIDGE

 \mathbf{Q} Compute $\hat{\mathbf{x}}_{i}^{(l)}$ coordinatewise by discarding the b (up. bound on Byz. nodes) lowest and highest values (trimming) and averaging the remaining with the local estimate [4]. If a node has less than 2b + 1 neighbors, it reverts to Local SGD.

Fig. 13: 3 Byz: Gauss.

Fig. 15: 2 Byz: LittleIsEnough.

Fig. 16: 3 Byz: LittleIsEnough.

Results : • This algorithm is very restrictive, as with four adversaries it reverts to Local SGD.

- Average convergence against three Gauss adversaries is better than DKrum.
- LittleIsEnough attack disrupts BRIDGE more than DKrum, with one fewer Byz. agent.

With a fixed learning rate η the suboptimality of the average parameters $\overline{\mathbf{x}}^{(T)}$, i.e. the squared norm of their gradient, decrases sub-linearly in the number of iterations T.

The second term depends on the bound σ^2 on gradients stochasticity. We can reduce this noise by increasing the number of agents N, and by reducing λ_2 , the second eigenvalue of Aggr.

 \circ λ_2 is 0 for a fully connected graph and, indicatively, increases the fewer edges are in the graph, getting to one for disconnected ones.

Fig. 4: 20 nodes, gossip average Fig. 6: 20 nodes, gossip average Fig. 3: 20 independent nodes. Fig. 5: 20 nodes, gossip average on fully connected graph. on cycle graph. on 4-regular graph.

Figures. Experiments on training a CNN on the MNIST dataset confirm the theoretical analysis.

Conclusions

Many more attacks and defences have been proposed. Their assumptions are very different and, as we see with the proposed examples, there is a tradeoff between the imposed restrictions and the convergence speed. Also, the same defence can be robust against some attacks and very weak against others.

A univocal characterization of robustness would help in comparing weaknesses and strengths of different methods. Furtermore, it could help in deriving convergence bounds in line with those we present for a Byzantine-free setting.

References

- Moran Baruch, Gilad Baruch, and Yoav Goldberg. A Little Is Enough: Circumventing Defenses For Distributed Learning. 2019. arXiv: 1902.06156 [cs.LG]
- William Cappelletti. "Byzantine-robust decentralized optimization for Machine Learning". MA thesis. EPFL, 2021.
- El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The Hidden Vulnerability of Distributed Learning in Byzantium. 2018. arXiv: 1802.07927 [stat.ML].
- Zhixiong Yang and Waheed U Bajwa. "BRIDGE: Byzantine-resilient decentralized gradient descent". In: arXiv preprint (2019). arXiv: 1908.08098.